/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
TestContainers Exercise

Henrik Baerbak Christensen



W Exercise 1

AARHUS UNIVERSITET

* Create a CDT for your ‘hello spark’ web server using test
containers
— See ‘consumer-driven-test-hello-spark’ on Mandatory iteration 3

Exercise 'consumer-driven-test-hello-spark’

Create a CDT using test containers to validate your image that solves the 'docker-hello-spark’ exercise.
To help you out, here is a working "build.gradle’

apply plugin: 'java'

repositories {
jeenter()

dependencies {

testImplementation group: 'com.konghq', name: 'unirest-java',
version: ‘3.3.00"

testImplementation 'junit:junit:4.13"
testImplementation group: 'org.hamcrest', name: "hamcrest', version: '2.2'
testImplementation "org.testcontainers:testcontainers:1.12.4"

And a template for the JUnit code in 'sre/test/java/example’ is

package example;

import kong.unirest.HttpResponse;

import kong.unirest.Unirest;

import kong.unirest.UnirestException;

import org.testcontainers.containers.GenericContainer;

import org.junit.*;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.CoreMatchers.*;

public class TestHelloSpark {

public static final int SERVER_PORT = 4567;
@ClassRule
public static GenericContainer helloSpark =
new GEnEr‘i(Container("(yol:r‘ image her§)")
L Eao o ABeni fccouce pooTh.

CS@AU Henrik Baerbak Christensen 2



W Exercise 2

AARHUS UNIVERSITET

« Solve the mandatory exercises
—_— ‘Cdt_q u Ote_se rVI Ce, Exercise 'cdt-quote-service' [M 40]

The official quote service stems from the docker hub image
henrikbaerbak/quote:msdo 1 8 1

In this exercise you should make Consumer Driven Tests (CDT)/Contract tests for the quote service - based upon the REST AP described earlier in exercise ‘quote-

service.
Requirements:
« Create CDT/Contract tests using your choosen HTTP/REST client library and TestContainers, that validate the REST API of the quote service. Ensure you cover all
endpoints as well as all potential return values (read: all the HTTP status codes).
+ (Of course!) All your out-of-process tests pass, when running '\gradlew integratioriTest.

Hand-in:

« Provide the FULL PATH of your CDT (ala ‘cave/integration/src/test/.../MyFullC DTForQuoteService java)

— ‘integration-test-quote-service’

Exercise 'integration-quote-service' [M 40]

In this exercise, you should make Integration Tests (in the Fowler sense) (or Connector tests in the Baerbak sense) of your QuoteService implementation, that is the

connector, developed earlier in the ‘quote-service' exercise.
Requirements:
» Create Integration Tests using TestContainers, that validate your implementation of your QuoteService connector that contacts a real quote service. Again, ensure
you cover all possible return values.
= The quote service must be started from the 'henrikbaerbak/quote:msdo_1_0_1' image in the TestContainer JUnit code itself, not by contacting the production
server at 'quote.baerbak.com.

Hand-in:

= Provide the FULL PATH of your CDT (ala ‘cave/integration/src/test/.../ MyIntegrationTestForQuoteService.java).

CS@AU Henrik Baerbak Christensen 3



/v Exercise 3

AARHUS UNIVERSITET
« Begin building an Architectural Prototype that explores
Implementing the CaveStorage interface using the
NoSQL database ‘Redis’.

— Hum hum, actually we will talk Redis later today...
* Find a zip with starter code on mandatory iteration 3.

Exercise 'architectural-prototyping-redis-connector'

In my 'Software Architecture in Practice' course, | teach about Architectural Prototyping: Small codebases that explore/experiment

with an architectural issue or an architectural tradeoff.

Prototyping work is often too cumbersome in the original codebase context, therefore often a minimal codebase is harvested and

used for quick experiments.
This exercise is basically a warm up to the 'integration-redis-connector' exercise later; and shows some of the setup you need.

The code base uses 'Jedis' as java driver, see some examples at How to use Redis in Java using Jedis.

Exercise: Implement (in partial) a Redis backed CaveStorage implementation using TestContainers as tool for an /ntegration Test (in

the Fowler sense) suite.

You will find the initial steps for a solution in the gradle project: ap-redis-connector.zip

CS@AU Henrik Baerbak Christensen 4



